AP PHYSICS 2 | Curriculum Map and Pacing Guide

COURSE DESCRIPTION:	Course SCI355
This course is designed as an equivalent of the second semester of an introductory algebra-based college	1 year, 1.25 credit
course. Students master foundational physics principles while engaging in science practice to foster deeper	Grades 11-12
understanding. This course requires 25 percent of time spent in laboratory work. This course explores topics,	Prerequisite: Honors
such as fluid static and dynamics; thermodynamics with kinetic theory; PV diagrams and probability;	Chemistry, Algebra II
electrostatics; electrical circuits with capacitors; magnetic fields; electromagnetism; optics and quantum, atomic	
and nuclear physics.	

QUARTER 1

Topic: Fluids

Key Terms: Density, Static Fluids, Flow Rate, Continuity, Bernoulli's Principle, Archimedes' principle, Pascal's principle, buoyancy, buoyant force, pressure

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
1.E.1	1.E.1.1: Predict the densities, differences in densities, or changes in densities	Fluids Inquiry Lab
3.C.4	under different conditions for natural phenomena and design an investigation	FLUID ILD
5.B.10	to verify the prediction. [SP 4.2, 6.4]	
5.F.1	1.E.1.2: Select from experimental data the information necessary to	PhET Balloons and Buoyancy
	determine the density of an object and/or compare densities of several	
	objects. [SP 4.1, 6.4]	
	3.C.4.1: Make claims about various contact forces between objects based on	Density boat demos
	the microscopic cause of those forces. [SP 6.1]	Mastering Physics
	3.C.4.2: Explain contact forces (tension, friction, normal, buoyant, spring) as	
	arising from interatomic electric forces and that they therefore have certain	
	directions. [SP 6.2]	
	5.B.10.1 : Use Bernoulli's equation to make calculations related to a moving	
	fluid. [SP 2.2]	
	5.B.10.2: Use Bernoulli's equation and/or the relationship between force and	
	pressure to make calculations related to a moving fluid. [SP 2.2]	

QUARTER 1

Topic: Fluids

Key Terms: Density, Static Fluids, Flow Rate, Continuity, Bernoulli's Principle, Archimedes' principle, Pascal's principle, buoyancy, buoyant force, pressure

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	5.B.10.3: Use Bernoulli's equation and the continuity equation to make	
	calculations related to a moving fluid. [SP 2.2]	
	5.B.10.4: Construct an explanation of Bernoulli's equation in terms of the	
	conservation of energy. [SP 6.2]	
	5.F.1.1: Make calculations of quantities related to flow of a fluid, using mass	
	conservation principles (the continuity equation).	
	[SP 2.1, 2.2, 7.2]	

QUARTER 1		
Topic: Thermodynamic	S	
Key Terms: Thermal Ec	uilibrium, the Zeroth Law of Thermodynamics, Absolute Temperature, The Ideal	Gas Law, Conduction, Convection,
Radiation, The First Lav	v of Thermodynamics, Isothermic, isobaric, Adiabatic, PV Diagrams, The Second I	aw of Thermodynamics, Entropy
Measurable Skills: ma	king predictions, problem solving, designing experiments, investigating, reading	graphs, making graphs, collecting data,
analyzing data		
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
1.E.3	1.E.3.1: Design an experiment and analyze data from it to examine thermal	Boyle's Law Inquiry Lab
4.C.3	conductivity. [SP 4.1, 4.2, 5.1]	
5.A.2	4.C.3.1: Make predictions about the direction of energy transfer due to	HEAT ENGINE ILD
5.B.4	temperature differences based on interactions at the microscopic level. [SP	PV Diagram match
5.B.5	6.4]	Mastering Physics
5.B.6	5.A.2.1: Define open and closed systems for everyday situations and apply	
5.B.7	conservation concepts for energy, charge, and linear momentum to those	
7.A.1	situations. [SP 6.4, 7.2]	

QUARTER 1

Topic: Thermodynamics

Key Terms: Thermal Equilibrium, the Zeroth Law of Thermodynamics, Absolute Temperature, The Ideal Gas Law, Conduction, Convection, Radiation, The First Law of Thermodynamics, Isothermic, isobaric, Adiabatic, PV Diagrams, The Second Law of Thermodynamics, Entropy

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
7.A.2	5.B.4.1: Describe and make predictions about the internal energy of systems.	
7.A.3	[SP 6.4, 7.2]	
7.B.2	5.B.4.2: Calculate changes in kinetic energy and potential energy of a system,	
	using information from representations of that system. [SP 1.4, 2.1, 2.2]	
	5.B.5.4: Make claims about the interaction between a system and its	
	environment in which the environment exerts a force on the system, thus	
	doing work on the system and changing the energy of the system (kinetic	
	energy plus potential energy). [SP 6.4, 7.2]	
	5.B.5.5: Predict and calculate the energy transfer to (i.e., the work done on)	
	an object or system from information about a force exerted on the object or	
	system through a distance. [SP 2.2, 6.4]	
	5.B.5.6: Design an experiment and analyze graphical data in which	
	interpretations of the area under a pressure-volume curve are needed to	
	determine the work done on or by the object or system.	
	[SP 4.2, 5.1]	
	5.B.6.1: Describe the models that represent processes by which energy can	
	be transferred between a system and its environment because of differences	
	in temperature: conduction, convection, and radiation. [SP 1.2]	
	5.B.7.1: Predict qualitative changes in the internal energy of a	
	thermodynamic system involving transfer of energy due to heat or work done	
	and justify those predictions in terms of conservation of energy principles. [SP	
	6.4, 7.2]	
	5.B.7.2: Create a plot of pressure versus volume for a thermodynamic process	
	from given data. [SP 1.1]	

QUARTER 1

Topic: Thermodynamics

Key Terms: Thermal Equilibrium, the Zeroth Law of Thermodynamics, Absolute Temperature, The Ideal Gas Law, Conduction, Convection, Radiation, The First Law of Thermodynamics, Isothermic, isobaric, Adiabatic, PV Diagrams, The Second Law of Thermodynamics, Entropy

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	5.B.7.3: Use a plot of pressure versus volume for a thermodynamic process to	
	make calculations of internal energy changes, heat, or work, based upon	
	conservation of energy principles (i.e., the first law of thermodynamics). [SP	
	1.1, 1.4, 2.2]	
	7.A.1.1 : Make claims about how the pressure of an ideal gas is connected to	
	the force exerted by molecules on the walls of the container, and how	
	changes in pressure affect the thermal equilibrium of the system. [SP 6.4, 7.2]	
	7.A.1.2: Analyze qualitatively the collisions with a container wall and	
	determine the cause of pressure, and at thermal equilibrium, to	
	quantitatively calculate the pressure, force or area for a thermodynamic	
	problem given two of the variables, treating a gas molecule as an object (i.e.,	
	ignoring its internal structure). [SP 1.4, 2.2]	
	7.A.2.1: Connect qualitatively the average of all kinetic energies of molecules	
	in a system to the temperature of the system. [SP 7.1]	
	7.A.2.2: Connect the statistical distribution of microscopic kinetic energies of	
	molecules to the macroscopic temperature of the system and to relate this to	
	thermodynamic processes. [SP 7.1]	
	7.A.3.1: Extrapolate from pressure and temperature or volume and	
	temperature data to make the prediction that there is a temperature at which	
	the pressure or volume extrapolates to zero. [SP 6.4, 7.2]	
	7.A.3.2 : Design a plan for collecting data to determine the relationships	
	between pressure, volume, and temperature, and amount of an ideal gas, and	
	to refine a scientific question concerning a proposed incorrect relationship	
	between the variables. [SP 3.2, 4.2]	

QUARTER 1

Topic: Thermodynamics

Key Terms: Thermal Equilibrium, the Zeroth Law of Thermodynamics, Absolute Temperature, The Ideal Gas Law, Conduction, Convection, Radiation, The First Law of Thermodynamics, Isothermic, isobaric, Adiabatic, PV Diagrams, The Second Law of Thermodynamics, Entropy

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	7.A.3.3: Analyze graphical representations of macroscopic variables for an	
	ideal gas to determine the relationships between these variables and to	
	ultimately determine the ideal gas law.	
	<i>PV</i> = <i>nRT</i> . [SP 5.1]	
	7.B.1.1: Extrapolate from pressure and temperature or volume and	
	temperature data to make the prediction that there is a temperature at which	
	the pressure or volume extrapolates to zero. [SP 6.4, 7.2]	
	7.B.2.1: Connect qualitatively the second law of thermodynamics in terms of	
	the state function called entropy and how it (entropy) behaves in reversible	
	and irreversible processes. [SP 7.1]	

QUARTER 2			
Topic: Electric Force, F	ield and Potential		
Key Terms: Static Elect	ricity, Electric Charge, Conservation of charge, Insulators, Conductors, Condu	ction, Induction, Coulomb's Law, Electric	
Field, Electric Potential	, Potential Difference, Equipotential Lines, Point Charges		
Measurable Skills: ma	Measurable Skills: making predictions, problem solving, designing experiments, investigating, reading graphs, making graphs, collecting data,		
analyzing data			
AP College Board	Student Learning Targets	Learning Activities/Investigations	
Essential Knowledge	(AP Learning Objectives and Science Practices)		
1.B.1	1.B.1.1: Make claims about natural phenomena based on conservation of	Electric potential models	
1.B.2	electric charge. [SP 6.4]	Electric potential models	
2.C.1	1.B.1.2: Make predictions, using the conservation of electric charge,		
2.C.2	about the sign and relative quantity of net charge of objects or systems	ELECTRIC FIELD POTENTIAL ILD	
2.C.3	after various charging processes, including conservation of charge in	Mastering Physics	
2.C.4	simple circuits. [SP 6.4, 7.2]		

QUARTER 2

Topic: Electric Force, Field and Potential

Key Terms: Static Electricity, Electric Charge, Conservation of charge, Insulators, Conductors, Conduction, Induction, Coulomb's Law, Electric Field, Electric Potential, Potential Difference, Equipotential Lines, Point Charges

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.C.5	1.B.2.2: Make a qualitative prediction about the distribution of positive	
2.E.1	and negative electric charges within neutral systems as they undergo	
2.E.2	various processes. [SP 6.4, 7.2]	
2.E.3	1.B.2.3: Challenge claims that polarization of electric charge or separation	
3.A.2	of charge must result in a net charge on the object. [SP6.1]	
3.A.3	1.B.3.1 : Challenge the claim that an electric charge smaller than the	
3.A.4	elementary charge has been isolated. [SP 1.5, 6.1, 7.2]	
3.B.1	2.C.1.1: Predict the direction and the magnitude of the force exerted on	
3.B.2	an object with an electric charge q placed in an electric field E using the	
3.C.2	mathematical model of the relation between an electric force and an	
3.G.2	electric field: $\vec{F} = q\vec{E}$; a vector relation. [SP 6.4, 7.2]	
4.E.3	2.C.1.2: Calculate any one of the variables — electric force, electric	
5.A.2	charge, and electric field — at a point given the values and sign or	
5.B.2	direction of the other two quantities.[SP 2.2]	
5.C.2	2.C.2.1: Apply qualitatively and semi-quantitatively the vector	
	relationship between the electric field and the net electric charge creating	
	that field. [SP 2.2, 6.4]	
	2.C.3.1 : Explain the inverse square dependence of the electric field	
	surrounding a spherically symmetric electrically charged object. [SP 6.2]	
	2.C.4.1: Distinguish the characteristics that differ between monopole	
	fields (gravitational field of spherical mass and electrical field due to	
	single point charge) and dipole fields (electric dipole field and magnetic	
	field) and make claims about the spatial behavior of the fields using	
	qualitative or semi-quantitative arguments based on vector addition of	

QUARTER 2

Topic: Electric Force, Field and Potential

Key Terms: Static Electricity, Electric Charge, Conservation of charge, Insulators, Conductors, Conduction, Induction, Coulomb's Law, Electric Field, Electric Potential, Potential Difference, Equipotential Lines, Point Charges

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	fields due to each point source, including identifying the locations and	
	signs of sources from a vector diagram of the field. [SP 2.2, 6.4, 7.2]	
	2.C.4.2 : Apply mathematical routines to determine the magnitude and	
	direction of the electric field at specified points in the vicinity of a small	
	set (2–4) of point charges, and express the results in terms of magnitude	
	and direction of the field in a visual representation by drawing field	
	vectors of appropriate length and direction at the specified points. [SP	
	1.4, 2.2]	
	2.C.5.1 : Create representations of the magnitude and direction of the	
	electric field at various distances (small compared to plate size) from two	
	electrically charged plates of equal magnitude and opposite signs, and is	
	able to recognize that the assumption of uniform field is not appropriate	
	near edges of plates. [SP 1.1, 2.2]	
	2.C.5.2 : Calculate the magnitude and determine the direction of the	
	electric field between two electrically charged parallel plates, given the	
	charge of each plate, or the electric potential difference and plate	
	separation. [SP 2.2]	
	2.C.5.3: Represent the motion of an electrically charged particle in the	
	uniform field between two oppositely charged plates and express the	
	connection of this motion to projectile motion of an object with mass in	
	the Earth's gravitational field. [SP 1.1, 2.2, 7.1]	
	2.E.1.1: Construct or interpret visual representations of the isolines of	
	equal gravitational potential energy per unit mass and refer to each line	
	as a gravitational equipotential. [SP 1.4, 6.4, 7.2]	
	2.E.2.1 : Determine the structure of isolines of electric potential by	
	constructing them in a given electric field. [SP 6.4, 7.2]	

QUARTER 2

Topic: Electric Force, Field and Potential

Key Terms: Static Electricity, Electric Charge, Conservation of charge, Insulators, Conductors, Conduction, Induction, Coulomb's Law, Electric Field, Electric Potential, Potential Difference, Equipotential Lines, Point Charges

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	2.E.2.2: Predict the structure of isolines of electric potential by	
	constructing them in a given electric field and make connections between	
	these isolines and those found in a gravitational field. [SP 6.4, 7.2]	
	2.E.2.3: Use qualitatively the concept of isolines to construct isolines of	
	electric potential in an electric field, and determine the effect of that field	
	on electrically charged objects. [SP 1.4]	
	2.E.3.1: Apply mathematical routines to calculate the average value of the	
	magnitude of the electric field in a region from a description of the	
	electric potential in that region using the displacement along the line on	
	which the difference in potential is evaluated. [SP 2.2]	
	2.E.3.2: Apply the concept of the isoline representation of electric	
	potential for a given electric charge distribution to predict the average	
	value of the electric field in the region. [SP 1.4, 6.4]	
	3.A.2.1: Represent forces in diagrams or mathematically using	
	appropriately labeled vectors with magnitude, direction, and units during	
	the analysis of a situation. [SP 1.1]	
	3.A.3.2: Challenge a claim that an object can exert a force on itself. [SP	
	6.1]	
	3.A.3.3: Describe a force as an interaction between two objects and	
	identify both objects for any force. [SP 1.4]	
	3.A.3.4: Make claims about the force on an object due to the presence of	
	other objects with the same property: mass, electric charge. [SP 6.1, 6.4]	
	3.A.4.1: Construct explanations of physical situations involving the	
	interaction of bodies using Newton's third law and the representation of	
	action-reaction pairs of forces. [SP 1.4, 6.2]	

QUARTER 2

Topic: Electric Force, Field and Potential

Key Terms: Static Electricity, Electric Charge, Conservation of charge, Insulators, Conductors, Conduction, Induction, Coulomb's Law, Electric Field, Electric Potential, Potential Difference, Equipotential Lines, Point Charges

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	3.A.4.2: Use Newton's third law to make claims and predictions about the	
	action-reaction pairs of forces when two objects interact. [SP 6.4, 7.2]	
	3.A.4.3: Analyze situations involving interactions among several objects	
	by using free-body diagrams that include the application of Newton's	
	third law to identify forces. [SP 1.4]	
	3.B.1.3: Re-express a free-body diagram representation into a	
	mathematical representation and solve the mathematical representation	
	for the acceleration of the object. [SP 1.5, 2.2]	
	3.B.1.4: Predict the motion of an object subject to forces exerted by	
	several objects using an application of Newton's second law in a variety of	
	physical situations. [SP 6.4, 7.2]	
	3.B.2.1: Create and use free-body diagrams to analyze physical situations	
	to solve problems with motion qualitatively and quantitatively. [SP 1.1,	
	1.4, 2.2]	
	3.C.2.2: Connect the concepts of gravitational force and electric force to	
	compare similarities and differences between the forces. [SP 7.2]	
	3.C.2.3: Use mathematics to describe the electric force that results from	
	the interaction of several separated point charges (generally 2 to 4 point	
	charges, though more are permitted in situations of high symmetry).	
	[SP 2.2]	
	3.G.2.1: Connect the strength of electromagnetic forces with the spatial	
	scale of the situation, the magnitude of the electric charges, and the	
	motion of the electrically charged objects involved. [SP 7.1]	
	4.E.3.2: Make predictions about the redistribution of charge caused by	
	the electric field due to other systems, resulting in charged or polarized	
	objects. [SP 6.4, 7.2]	

QUARTER 2

Topic: Electric Force, Field and Potential

Key Terms: Static Electricity, Electric Charge, Conservation of charge, Insulators, Conductors, Conduction, Induction, Coulomb's Law, Electric Field, Electric Potential, Potential Difference, Equipotential Lines, Point Charges

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	4.E.3.3: Construct a representation of the distribution of fixed and mobile	
	charge in insulators and conductors. [SP 1.1, 1.4, 6.4]	
	4.E.3.4: Construct a representation of the distribution of fixed and mobile	
	charge in insulators and conductors that predicts charge distribution in	
	processes involving induction or conduction. [SP 1.1, 1.4, 6.4]	
	4.E.3.5: Plan and/or analyze the results of experiments in which electric	
	charge rearrangement occurs by electrostatic induction, or is able to	
	refine a scientific question relating to such an experiment by identifying	
	anomalies in a data set or procedure. [SP 3.2, 4.1, 4.2, 5.1, 5.3]	
	5.A.2.1 : Define open and closed systems for everyday situations and	
	apply conservation concepts for energy, charge, and linear momentum to	
	those situations. [SP 6.4, 7.2]	
	5.B.2.1: Calculate the expected behavior of a system using the object	
	model (i.e., by ignoring changes in internal structure) to analyze a	
	situation. Then, when the model fails, the student can justify the use of	
	conservation of energy principles to calculate the change in internal	
	energy due to changes in internal structure because the object is actually	
	a system. [SP 1.4, 2.1]	
	5.C.2.1: Predict electric charges on objects within a system by application	
	of the principle of charge conservation within a system. [SP 6.4]	
	5.C.2.2: Design a plan to collect data on the electrical charging of objects	
	and electric charge induction on neutral objects and qualitatively analyze	
	that data. [SP 4.2, 5.1]	
	5.C.2.3: Justify the selection of data relevant to an investigation of the	
	electrical charging of objects and electric charge induction on neutral	
	objects. [SP 4.1]	

QUARTER 2

Topic: Electric Circuits

Key Terms: Electric Current, Ohm's Law, Resistance, Resistors, Resistivity, Capacitance, Electric Power, Resistors in Series and Parallel, Kirchhoff's Rules, RC Circuits (steady state only)

AP College Board	Student Learning Targets		Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)		
1.E.2	1.E.2.1: Choose and justify the selection of data needed to determine	٠	Inquiry Lab stations (ohmic vs non-
4.E.4	resistivity for a given material. [SP 4.1]		ohmic, playdoh resistivity, capacitor
4.E.5			lab, mystery circuit)
5.B.9	4.E.4.1: Make predictions about the properties of resistors and/or		
5.C.3	capacitors when placed in a simple circuit, based on the geometry of the	٠	RC Circuit Lab
	circuit element and supported by scientific theories and mathematical	٠	RC CIRCUITS ILD
	relationships. [SP 2.2, 6.4]		
	4.E.4.2: Design a plan for the collection of data to determine the effect of		
	changing the geometry and/or materials on the resistance or capacitance	٠	Mastering Physics
	of a circuit element and relate results to the basic properties of resistors		
	and capacitors. [SP 4.1, 4.2]		
	4.E.4.3: Analyze data to determine the effect of changing the geometry		
	and/or materials on the resistance or capacitance of a circuit element and		
	relate results to the basic properties of resistors and capacitors.		
	[SP 5.1]		
	4.E.5.1: Make and justify a quantitative prediction of the effect of a		
	change in values or arrangements of one or two circuit elements on the		
	currents and potential differences in a circuit containing a small number		
	of sources of emf, resistors, capacitors, and switches in series and/or		
	parallel. [SP 2.2, 6.4]		
	4.E.5.2: Make and justify a qualitative prediction of the effect of a change		
	in values or arrangements of one or two circuit elements on currents and		
	potential differences in a circuit containing a small number of sources of		
	emf, resistors, capacitors, and switches in series and/or parallel.		
	[SP 6.1, 6.4]		

QUARTER 2

Topic: Electric Circuits

Key Terms: Electric Current, Ohm's Law, Resistance, Resistors, Resistivity, Capacitance, Electric Power, Resistors in Series and Parallel, Kirchhoff's Rules, RC Circuits (steady state only)

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	4.E.5.3: Plan data collection strategies and perform data analysis to	
	examine the values of currents and potential differences in an electric	
	circuit that is modified by changing or rearranging circuit elements,	
	including sources of emf, resistors, and capacitors.	
	[SP 2.2, 4.2, 5.1]	
	5.B.9.4: Analyze experimental data including an analysis of experimental	
	uncertainty that will demonstrate the validity of Kirchhoff's loop rule. [SP	
	5.1]	
	5.B.9.5: Use conservation of energy principles (Kirchhoff's loop rule) to	
	describe and make predictions regarding electrical potential difference,	
	charge, and current in steady-state circuits composed of various	
	combinations of resistors and capacitors. [SP 6.4]	
	5.B.9.6: Express mathematically the changes in electric potential energy	
	of a loop in a multi-loop electrical circuit and justify this expression using	
	the principle of the conservation of energy. [SP 2.1, 2.2]	
	5.B.9.7: Refine and analyze a scientific question for an experiment using	
	Kirchhoff's Loop rule for circuits that includes determination of internal	
	resistance of the battery and analysis of a non-ohmic resistor.	
	[SP 4.1, 4.2, 5.1, 5.3]	
	5.C.3.4: Predict or explain current values in series and parallel	
	arrangements of resistors and other branching circuits using Kirchhoff's	
	junction rule and relate the rule to the law of charge conservation. [SP	
	6.4, 7.2]	
	5.C.3.5: Determine missing values and direction of electric current in	
	branches of a circuit with resistors and NO capacitors from values and	

QUARTER 2

Topic: Electric Circuits

Key Terms: Electric Current, Ohm's Law, Resistance, Resistors, Resistivity, Capacitance, Electric Power, Resistors in Series and Parallel, Kirchhoff's Rules, RC Circuits (steady state only)

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	directions of current in other branches of the circuit through appropriate	
	selection of nodes and application of the junction rule. [SP 1.4, 2.2]	
	5.C.3.6: Determine missing values and direction of electric current in	
	branches of a circuit with both resistors and capacitors from values and	
	directions of current in other branches of the circuit through appropriate	
	selection of nodes and application of the junction rule. [SP 1.4, 2.2]	
	5.C.3.7: Determine missing values, direction of electric current, charge of	
	capacitors at steady state, and potential differences within a circuit with	
	resistors and capacitors from values and directions of current in other	
	branches of the circuit. [SP 1.4, 2.2]	

	QUARTER 3	
Topic: Magnetism and	Electromagnetic Induction	
Key Terms: Magnets,	Magnetic Fields, magnetic pole, Induced EMF, Faraday's Law of Induction, Le	nz's Law
Measurable Skills: ma	king predictions, problem solving, designing experiments, investigating, read	ing graphs, making graphs, collecting data,
analyzing data		
AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
2.C.4	2.C.4.1: The student is able to distinguish the characteristics that differ	
2.D.1	between monopole fields (gravitational field of spherical mass and	
2.D.2	electrical field due to single point charge) and dipole fields (electric dipole	Magnetism Inquiry Lab
2.D.3	field and magnetic field) and make claims about the spatial behavior of	MAGNETISM ILD
2.D.4	the fields using qualitative or semi quantitative arguments based on	Electromagnetic Induction Inquiry Lab
3.A.2	vector addition of fields due to each point source, including identifying	
3.A.3	the locations and signs of sources from a vector diagram of the field.	

QUARTER 3

Topic: Magnetism and Electromagnetic Induction

Key Terms: Magnets, Magnetic Fields, magnetic pole, Induced EMF, Faraday's Law of Induction, Lenz's Law

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
3.A.4	[SP 2.2, 6.4, 7.2]	
3.C.3	2.D.1.1: Apply mathematical routines to express the force exerted on a	ELECTROMAGNETIC INDUCTION ILD
4.E.1	moving charged object by a magnetic field. [SP 2.2]	
4.E.2	2.D.2.1: Create a verbal or visual representation of a magnetic field	Mastering Physics
	around a long straight wire or a pair of parallel wires. [SP 1.1]	
	2.D.3.1 : Describe the orientation of a magnetic dipole placed in a	
	magnetic field in general and the particular cases of a compass in the	
	magnetic field of the Earth and iron filings surrounding a bar magnet. [SP	
	1.2]	
	2.D.4.1: Use the representation of magnetic domains to qualitatively	
	analyze the magnetic behavior of a bar magnet composed of	
	ferromagnetic material. [SP 1.4]	
	3.A.2.1: Represent forces in diagrams or mathematically using	
	appropriately labeled vectors with magnitude, direction, and units during	
	the analysis of a situation. [SP 1.1]	
	3.A.3.2: Challenge a claim that an object can exert a force on itself. [SP	
	6.1]	
	3.A.3.3: Describe a force as an interaction between two objects and	
	identify both objects for any force. [SP 1.4]	
	3.A.4.1 : Construct explanations of physical situations involving the	
	interaction of bodies using Newton's third law and the representation of	
	action-reaction pairs of forces. [SP 1.4, 6.2]	
	3.A.4.2: Use Newton's third law to make claims and predictions about the	
	action-reaction pairs of forces when two objects interact. [SP 6.4, 7.2]	

QUARTER 3

Topic: Magnetism and Electromagnetic Induction

Key Terms: Magnets, Magnetic Fields, magnetic pole, Induced EMF, Faraday's Law of Induction, Lenz's Law

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	3.A.4.3: Analyze situations involving interactions among several objects	
	by using free-body diagrams that include the application of Newton's	
	third law to identify forces. [SP 1.4]	
	3.C.3.1: Use right-hand rules to analyze a situation involving a current-	
	carrying conductor and a moving electrically charged object to determine	
	the direction of the magnetic force exerted on the charged object due to	
	the magnetic field created by the current-carrying conductor. [SP 1.4]	
	3.C.3.2: Plan a data collection strategy appropriate to an investigation of	
	the direction of the force on a moving electrically charged object caused	
	by a current in a wire in the context of a specific set of equipment and	
	instruments and analyze the resulting data to arrive at a conclusion. [SP	
	4.2, 5.1]	
	4.E.1.1: Use representations and models to qualitatively describe the	
	magnetic properties of some materials that can be affected by magnetic	
	properties of other objects in the system.	
	[SP 1.1, 1.4, 2.2]	
	4.E.2.1: Construct an explanation of the function of a simple	
	electromagnetic device in which an induced emf is produced by a	
	changing magnetic flux through an area defined by a current loop (i.e., a	
	simple microphone or generator) or of the effect on behavior of a device	
	in which an induced emf is produced by a constant magnetic field through	
	a changing area. [SP 6.4]	

(0)						
		-	R		R	-
	-					_

Topic: Geometric and Physical Optics

Key Terms: Electromagnetic Waves, Polarization, Reflection, Refraction, Spherical Mirrors, Thin Lenses, Interference, Young's Double Slit Experiment, Diffraction, Thin Films

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
6.A.1	6.A.1.2: Describe representations of transverse and longitudinal waves.	Ray Optics PhET
6.A.2	[SP 1.2]	Ray Optics FIET
6.B.3	6.A.1.3: Analyze data (or a visual representation) to identify patterns that	
6.C.1	indicate that a particular mechanical wave is polarized and construct an	IMAGE FORMATION WITH LENSES ILD
6.C.2	explanation of the fact that the wave must have a vibration perpendicular	MIRRORS ILD
6.C.3	to the direction of energy propagation. [SP 5.1, 6.2]	
6.C.4	6.A.2.2: Contrast mechanical and electromagnetic waves in terms of the	Thin lens lab
6.E.1	need for a medium in wave propagation. [SP 6.4, 7.2]	
6.E.2	6.B.3.1: Construct an equation relating the wavelength and amplitude of	
6.E.3	a wave from a graphical representation of the electric or magnetic field	Finding the Focal Length Inquiry Lab
6.E.4	value as a function of position at a given time instant and vice versa, or	Optics Inquiry Lab
6.E.5	construct an equation relating the frequency or period and amplitude of a	Interference Inquiry Lab
6.F.1	wave from a graphical representation of the electric or magnetic field	
	value at a given position as a function of time and vice versa. [SP 1.5]	
	6.C.1.1: Make claims and predictions about the net disturbance that	Mastering Physics
	occurs when two waves overlap. Examples should include standing	Mastering Physics
	waves. [SP 6.4, 7.2]	
	6.C.1.2: Construct representations to graphically analyze situations in	
	which two waves overlap over time using the principle of superposition.	
	[SP 1.4]	
	6.C.2.1: Make claims about the diffraction pattern produced when a wave	
	passes through a small opening, and to qualitatively apply the wave	
	model to quantities that describe the generation of a diffraction pattern	
	when a wave passes through an opening whose dimensions are	
	comparable to the wavelength of the wave. [SP 1.4, 6.4, 7.2]	

_				
QU		• •	 •	6
	7^1			-

Topic: Geometric and Physical Optics

Key Terms: Electromagnetic Waves, Polarization, Reflection, Refraction, Spherical Mirrors, Thin Lenses, Interference, Young's Double Slit Experiment, Diffraction, Thin Films

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	6.C.3.1 : Apply qualitatively the wave model to quantities that describe	
	the generation of interference patterns to make predictions about	
	interference patterns that form when waves pass through a set of	
	openings whose spacing and widths are small compared to the	
	wavelength of the waves. [SP 1.4, 6.4]	
	6.C.4.1: Predict and explain, using representations and models, the ability	
	or inability of waves to transfer energy around corners and behind	
	obstacles in terms of the diffraction property of waves in situations	
	involving various kinds of wave phenomena, including sound and light.	
	[SP 6.4, 7.2]	
	6.E.1.1: Make claims using connections across concepts about the	
	behavior of light as the wave travels from one medium into another, as	
	some is transmitted, some is reflected, and some is absorbed. [SP 6.4,	
	7.2]	
	6.E.2.1: Make predictions about the locations of object and image relative	
	to the location of a reflecting surface. The prediction should be based on	
	the model of specular reflection with all angles measured relative to the	
	normal to the surface. [SP 6.4, 7.2]	
	6.E.3.1: Describe models of light traveling across a boundary from one	
	transparent material to another when the speed of propagation changes,	
	causing a change in the path of the light ray at the boundary of the two	
	media. [SP 1.1, 1.4]	
	6.E.3.2: Plan data collection strategies as well as perform data analysis	
	and evaluation of the evidence for finding the relationship between the	
	angle of incidence and the angle of refraction for light crossing	

Q	П	Λ	D	Ε	D	2
Ч	U					Ð

Topic: Geometric and Physical Optics

Key Terms: Electromagnetic Waves, Polarization, Reflection, Refraction, Spherical Mirrors, Thin Lenses, Interference, Young's Double Slit Experiment, Diffraction, Thin Films

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	boundaries from one transparent material to another (Snell's law). [SP	
	4.1, 5.1, 5.2, 5.3]	
	6.E.3.3: Make claims and predictions about path changes for light	
	traveling across a boundary from one transparent material to another at	
	non-normal angles resulting from changes in the speed of propagation.	
	[SP 6.4, 7.2]	
	6.E.4.1: Plan data collection strategies, and perform data analysis and	
	evaluation of evidence about the formation of images due to reflection of	
	light from curved spherical mirrors.	
	[SP 3.2, 4.1, 5.1, 5.2, 5.3]	
	6.E.4.2: Use quantitative and qualitative representations and models to	
	analyze situations and solve problems about image formation occurring	
	due to the reflection of light from surfaces. [SP 1.4, 2.2]	
	6.E.5.1: Use quantitative and qualitative representations and models to	
	analyze situations and solve problems about image formation occurring	
	due to the refraction of light through thin lenses. [SSP 1.4, 2.2]	
	6.E.5.2: Plan data collection strategies, perform data analysis and	
	evaluation of evidence, and refine scientific questions about the	
	formation of images due to refraction for thin lenses.	
	[SP 3.2, 4.1, 5.1, 5.2, 5.3]	
	6.F.1.1: Make qualitative comparisons of the wavelengths of types of	
	electromagnetic radiation. [SP 6.4, 7.2]	
	6.F.2.1 : Describe representations and models of electromagnetic waves	
	that explain the transmission of energy when no medium is present. [SP	
	1.1]	

QUARTER 4

Topic: Quantum Physics, Atomic and Nuclear Physics

Key Terms: Planck's Quantum Hypothesis, Photon Theory of Light, Photoelectric Effect, Wave Nature of Matter, Emission and Absorption Spectra, fission, fusion, alpha decay, beta decay, gamma decay, Conservation Laws: Charge, Nucleon and Mass-Energy

AP College Board	Student Learning Targets		Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)		
1.A.2	1.A.2.1: Construct representations of the differences between a		
1.A.4	fundamental particle and a system composed of fundamental particles		Photoelectric Effect PhET
1.D.1	and to relate this to the properties and scales of the systems being	•	
1.D.3	investigated. [SP 1.1, 7.1]		
3.G.3	1.A.4.1: Construct representations of the energy-level structure of an		Planck's constant LED lab
4.C.4	electron in an atom and to relate this to the properties and scales of the	•	Planck's constant LED lab
5.B.8	systems being investigated. [SP 1.1, 7.1]		
5.B.11	1.D.1.1: Explain why classical mechanics cannot describe all properties of		
5.C.1	objects by articulating the reasons that classical mechanics must be	٠	The Particle Model of Light Inquiry
5.D.1	refined and an alternative explanation developed when classical particles		Lab
	display wave properties. [SP 6.3]		
5.D.2	1.D.3.1: Articulate the reasons that classical mechanics must be replaced		
5.D.3	by special relativity to describe the experimental results and theoretical		
5.G.1	predictions that show that the properties of space and time are not		
6.F.3	absolute. [Students will be expected to recognize situations in which		
6.F.4	nonrelativistic classical physics breaks down and to explain how relativity	•	Mastering Physics
7.C.1	addresses that breakdown, but students will not be expected to know in		
7.C.2	which of two reference frames a given series of events corresponds to a		
7.C.3	greater or lesser time interval, or a greater or lesser spatial distance; they		
7.C.4	will just need to know that observers in the two reference frames can		
	"disagree" about some time and distance intervals.] [SP 6.3, 7.1]		
	3.G.3.1: Identify the strong force as the force that is responsible for		
	holding the nucleus together. [SP 7.2]		
	4.C.4.1: Apply mathematical routines to describe the relationship		
	between mass and energy and apply this concept across domains of scale.		
	[SP 2.2, 2.3, 7.2]		

QUARTER 4

Topic: Quantum Physics, Atomic and Nuclear Physics

Key Terms: Planck's Quantum Hypothesis, Photon Theory of Light, Photoelectric Effect, Wave Nature of Matter, Emission and Absorption Spectra, fission, fusion, alpha decay, beta decay, gamma decay, Conservation Laws: Charge, Nucleon and Mass-Energy

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	5.B.8.1: Describe emission or absorption spectra associated with	
	electronic or nuclear transitions as transitions between allowed energy	
	states of the atom in terms of the principle of energy conservation,	
	including characterization of the frequency of radiation emitted or	
	absorbed. [SP 1.2, 7.2]	
	5.B.11.1: Apply conservation of mass and conservation of energy	
	concepts to a natural phenomenon and use the equation $E = mc^2$ to make	
	a related calculation. [SP 2.2, 7.2]	
	5.C.1.1: Analyze electric charge conservation for nuclear and elementary	
	particle reactions and make predictions related to such reactions based	
	upon conservation of charge. [SP 6.4, 7.2]	
	5.D.1.6: Make predictions of the dynamical properties of a system	
	undergoing a collision by application of the principle of linear momentum	
	conservation and the principle of the conservation of energy in situations	
	in which an elastic collision may also be assumed. [SP 6.4]	
	5.D.1.7: Classify a given collision situation as elastic or inelastic, justify the	
	selection of conservation of linear momentum and restoration of kinetic	
	energy as the appropriate principles for analyzing an elastic collision,	
	solve for missing variables, and calculate their values. [SP 2.1, 2.2]	
	5.D.2.5: Classify a given collision situation as elastic or inelastic, justify the	
	selection of conservation of linear momentum as the appropriate solution	
	method for an inelastic collision, recognize that there is a common final	
	velocity for the colliding objects in the totally inelastic case, solve for	
	missing variables, and calculate their values. [SP 2.1, 2.2]	

QUARTER 4

Topic: Quantum Physics, Atomic and Nuclear Physics

Key Terms: Planck's Quantum Hypothesis, Photon Theory of Light, Photoelectric Effect, Wave Nature of Matter, Emission and Absorption Spectra, fission, fusion, alpha decay, beta decay, gamma decay, Conservation Laws: Charge, Nucleon and Mass-Energy

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	5.D.2.6: Apply the conservation of linear momentum to a closed system	
	of objects involved in an inelastic collision to predict the change in kinetic	
	energy. [SP 6.4, 7.2]	
	5.D.3.2 : Make predictions about the velocity of the center of mass for	
	interactions within a defined one-dimensional system. [SP 6.4]	
	5.D.3.3: Make predictions about the velocity of the center of mass for	
	interactions within a defined two-dimensional system. [SP 6.4]	
	5.G.1.1: Apply conservation of nucleon number and conservation of	
	electric charge to make predictions about nuclear reactions and decays	
	such as fission, fusion, alpha decay, beta decay, or gamma decay.	
	[SP 6.4]	
	6.F.3.1: Support the photon model of radiant energy with evidence	
	provided by the photoelectric effect. [SP 6.4]	
	6.F.4.1: Select a model of radiant energy that is appropriate to the spatial	
	or temporal scale of an interaction with matter. [SP 6.4, 7.1]	
	6.G.1.1: Make predictions about using the scale of the problem to	
	determine at what regimes a particle or wave model is more appropriate.	
	[SP 6.4, 7.1]	
	6.G.2.1: Articulate the evidence supporting the claim that a wave model	
	of matter is appropriate to explain the diffraction of matter interacting	
	with a crystal, given conditions where a particle of matter has momentum	
	corresponding to a de Broglie wavelength smaller than the separation	
	between adjacent atoms in the crystal. [SP 6.1]	
	6.G.2.2: Predict the dependence of major features of a diffraction pattern	
	(e.g., spacing between interference maxima), based upon the particle	
	speed and de Broglie wavelength of electrons in an electron beam	

QUARTER 4

Topic: Quantum Physics, Atomic and Nuclear Physics

Key Terms: Planck's Quantum Hypothesis, Photon Theory of Light, Photoelectric Effect, Wave Nature of Matter, Emission and Absorption Spectra, fission, fusion, alpha decay, beta decay, gamma decay, Conservation Laws: Charge, Nucleon and Mass-Energy

Measurable Skills: making predictions, problem solving, designing experiments, investigating, reading graphs, making graphs, collecting data, analyzing data

AP College Board	Student Learning Targets	Learning Activities/Investigations
Essential Knowledge	(AP Learning Objectives and Science Practices)	
	interacting with a crystal. (de Broglie wavelength need not be given, so	
	students may need to obtain it.) [SP 6.4]	
	7.C.1.1: Use a graphical wave function representation of a particle to	
	predict qualitatively the probability of finding a particle in a specific	
	spatial region. [SP 1.4]	
	7.C.2.1: Use a standing wave model in which an electron orbit	
	circumference is an integer multiple of the de Broglie wavelength to give	
	a qualitative explanation that accounts for the existence of specific	
	allowed energy states of an electron in an atom. [SP 1.4]	
	7.C.3.1: Predict the number of radioactive nuclei remaining in a sample	
	after a certain period of time, and also predict the missing species (alpha,	
	beta, gamma) in a radioactive decay. [SP 6.4]	
	7.C.4.1: Construct or interpret representations of transitions between	
	atomic energy states involving the emission and absorption of photons.	
	(For questions addressing stimulated emission, students will not be	
	expected to recall the details of the process, such as the fact that the	
	emitted photons have the same frequency and phase as the incident	
	photon; but given a representation of the process, students are expected	
	to make inferences such as figuring out from energy conservation that	
	since the atom loses energy in the process, the emitted photons taken	
	together must carry more energy than the incident photon.) [SP 1.1, 1.2]	

Science Practice 1. The student can use representations and models to communicate scientific phenomena and solve scientific problems.

1.1 The student can *create representations and models* of natural or man–made phenomena and systems in the domain.

1.2 The student can *describe representations and models* of natural or man–made phenomena and systems in the domain.

1.3 The student can refine representations and models of natural or man-made phenomena and systems in the domain.

Board of Education Adopted: May 13, 2019

1.4 The student can use representations and models to analyze situations or solve problems qualitatively and quantitatively.

1.5 The student can *re-express key elements of natural phenomena across multiple representations* in the domain.

Science Practice 2. The student can use mathematics appropriately.

- 2.1 The student can *justify the selection of a mathematical routine* to solve problems.
- 2.2 The student can *apply mathematical routines* to quantities that describe natural phenomena.
- 2.3 The student can *estimate numerically quantities that describe* natural phenomena.

Science Practice 3. The student can engage in scientific questioning to extend thinking or to guide investigations within the context of the AP[®] course.

- 3.1 The student can *pose scientific questions*.
- 3.2 The student can *refine scientific questions*.
- 3.3 The student can *evaluate scientific questions*.

Science Practice 4. The student can plan and implement data collection strategies appropriate to a particular scientific question.

- 4.1 The student can *justify the selection of the kind of data* needed to answer a particular scientific question.
- 4.2 The student can design a plan for collecting data to answer a particular scientific question.
- 4.3 The student can collect data to answer a particular scientific question.
- 4.4 The student can evaluate sources of data to answer a particular scientific question.

Science Practice 5. The student can perform data analysis and evaluation of evidence.

- 5.1 The student can analyze data to identify patterns or relationships.
- 5.2 The student can refine observations and measurements based on data analysis.
- 5.3 The student can evaluate the evidence provided by data sets in relation to a particular scientific question.

Science Practice 6. The student can work with scientific explanations and theories.

6.1 The student can justify claims with evidence.

- 6.2 The student can construct explanations of phenomena based on evidence produced through scientific practices.
- 6.3 The student can articulate the reasons that scientific explanations and theories are refined or replaced.
- 6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models.
- 6.5 The student can evaluate alternative scientific explanations.

Science Practice 7. The student is able to connect and relate knowledge across various scales, concepts, and representations in and across domains.

7.1 The student can *connect phenomena and models* across spatial and temporal scales.

7.2 The student can *connect concepts* in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas.

District Instructional Resource:

Giancoli Physics: Principles with Applications AP Edition (2014) / Pearson (6-year online subscription: 2019-2020 to 2024-2025)

Standards Alignment:

AP Physics 2: Algebra-Based Course and Exam Description (2017) – retrieved Jan. 2, 2019 <u>https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-physics-2-course-and-exam-description.pdf</u>